Monday, 11 March 2013

Function

FUNCTION


Definition of function
function is a relationship between two quantities, one of which is completely determined by the value of the other. A function f from a set X to a set Y is a relation between the elements of X (called the inputs) and the elements of Y (called the outputs) with the property that each input is related to one and only one output. We use the notation
f : X → Y

Concept of Boolean Functions
An expression that is form with binary variables. It can be represented as an algebraic expression or in truth table.



      

       TYPES  OF FUNCTION


1.      INJECTIVE
o   one-to-one
o   f  is called injective when the a = b
o   can express in quantifier

2.      SURJECTIVE
o   onto
o   f  is called surjective when there is a function from element A to element B

3.      BIJECTIVE
o   one-to-one correspondence
o   f  becomes function when no value in  the domain are signed to the same function value
o   no repeatation of domain




Inverse function and composition of function

Inverse function
Definition :-
¨      Let  be one-to-one correspondence from the set A to the set B
¨       is the function that assign to be an element b belonging to B the unique element in A such that f (a) = b
¨      Function of f is denoted by  f ˉ ¹ then  f ˉ ¹( b) = a when f (a) = b
       
        example
                          f : X \to Y is the relation f^{-1} : Y \to X

      






Composition function
¨       Let g be a function from the set A to the set B and let be a function from the set B to the set C
¨      Function f and g, denoted for all a Î A by   ° is defined by
      
           (  ° g )(a) = f( g(a) )
      
  example
                   f  ° is defined  by   (  ° g )(a) =  ( g(a)) = f (b) = 2
               (  ° g )(b) =  g(b)) = f(c) =1 and (  ° g )(c) =  g(c)) = f(a) =3
       Noted that:-
                f  ° is not defined because the range of   f  is not a subset of domain of  g
   





                                                
                           


No comments:

Post a Comment